问题 MapReduce Application中mapper的数目和分片的数目是一样的
默认情况下,分片和输入文件的分块数是相等的。也不完全相等,如果block size大小事128M,文件大小为128.1M,文件的block数目为2,但是application运行过程中,你会发现分片数目是1,而不是2,其中的机理,后面会分析
有的程序会设置map的数目,那么map数目是怎样影响分片的数目的呢?
如果文件大小为0,是否会作为一个分片传给map任务?
流程FileInputFormat.getSplits返回文件的分片数目,这部分将介绍其运行流程,后面将粘贴其源码并给出注释
通过listStatus()获取输入文件列表files,其中会遍历输入目录的子目录,并过滤掉部分文件,如文件_SUCCESS
获取所有的文件大小totalSIze
goalSIze=totalSize/numMaps。numMaps是用户指定的map数目
files中取出一个文件file
计算splitSize。splitSize=max(minSplitSize,min(file.blockSize,goalSize)),其中minSplitSize是允许的最小分片大小,默认为1B
后面根据splitSize大小将file分片。在分片的时候,如果剩余的大小不大于splitSize*1.1,且大于0B的时候,会将该区域整个作为一个分片。这样做是为了防止一个mapper处理的数据太小
将file的分片加入到splits中
返回4,直到将files遍历完
结束,返回splits
源码(hadoop2.2.0)
其实流程算起来也不算复杂,所以就直接用代码注释来做吧
这里边涉及这么几个方法:
1、public List<InputSplit> getSplits(JobContext job), 这个由客户端调用来获得当前Job的所有分片(split),然后发送给JobTracker(新API中应该是ResourceManager),而JobTracker根据这些分片的存储位置来给TaskTracker分配map任务去处理这些分片。这个方法用到了后边的listStatus,然后根据得到的这些文件信息,从FileSystem那里去拉取这些组成这些文件的块的信息(BlockLocation),使用的是getFileBlockLocation(file,start,len),这个方法是与使用的文件系统实现相关的(FileSystem,LocalFileSystem,DistributedFileSystem)
/** * Generate the list of files and make them into FileSplits. * @param job the job context * @throws IOException */ public ListgetSplits(JobContext job) throws IOException { long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); long maxSize = getMaxSplitSize(job); // generate splits List splits = new ArrayList (); List files = listStatus(job); for (FileStatus file: files) { Path path = file.getPath(); long length = file.getLen(); if (length != 0) { BlockLocation[] blkLocations; if (file instanceof LocatedFileStatus) { blkLocations = ((LocatedFileStatus) file).getBlockLocations(); } else { FileSystem fs = path.getFileSystem(job.getConfiguration()); blkLocations = fs.getFileBlockLocations(file, 0, length); } if (isSplitable(job, path)) { long blockSize = file.getBlockSize(); long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length; while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining); splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts())); bytesRemaining -= splitSize; } if (bytesRemaining != 0) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining); splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkIndex].getHosts())); } } else { // not splitable splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts())); } } else { //Create empty hosts array for zero length files splits.add(makeSplit(path, 0, length, new String[0])); } } // Save the number of input files for metrics/loadgen job.getConfiguration().setLong(NUM_INPUT_FILES, files.size()); LOG.debug("Total # of splits: " + splits.size()); return splits; }
2、protected List<FileStatus> listStatus(JobContext job), 先根据“mapred.input.dir”的配置值去得到用户指定的所有Path。然后根据这个JobContext的Configuration得到FileSystem(当然,更可能是 DistributedFileSystem )。最后应用用户可能设置了的PathFilter,通过FileSystem获取所有这些Path所代表的File(FileStatus)。注:这个方法的东西相当多,很多内容还十分陌生。
/** List input directories. * Subclasses may override to, e.g., select only files matching a regular * expression. * * @param job the job to list input paths for * @return array of FileStatus objects * @throws IOException if zero items. */ protected ListlistStatus(JobContext job ) throws IOException { List result = new ArrayList (); Path[] dirs = getInputPaths(job); if (dirs.length == 0) { throw new IOException("No input paths specified in job"); } // get tokens for all the required FileSystems.. TokenCache.obtainTokensForNamenodes(job.getCredentials(), dirs, job.getConfiguration()); // Whether we need to recursive look into the directory structure boolean recursive = getInputDirRecursive(job); List errors = new ArrayList (); // creates a MultiPathFilter with the hiddenFileFilter and the // user provided one (if any). List filters = new ArrayList (); filters.add(hiddenFileFilter); PathFilter jobFilter = getInputPathFilter(job); if (jobFilter != null) { filters.add(jobFilter); } PathFilter inputFilter = new MultiPathFilter(filters); for (int i=0; i < dirs.length; ++i) { Path p = dirs[i]; FileSystem fs = p.getFileSystem(job.getConfiguration()); FileStatus[] matches = fs.globStatus(p, inputFilter); if (matches == null) { errors.add(new IOException("Input path does not exist: " + p)); } else if (matches.length == 0) { errors.add(new IOException("Input Pattern " + p + " matches 0 files")); } else { for (FileStatus globStat: matches) { if (globStat.isDirectory()) { RemoteIterator iter = fs.listLocatedStatus(globStat.getPath()); while (iter.hasNext()) { LocatedFileStatus stat = iter.next(); if (inputFilter.accept(stat.getPath())) { if (recursive && stat.isDirectory()) { addInputPathRecursively(result, fs, stat.getPath(), inputFilter); } else { result.add(stat); } } } } else { result.add(globStat); } } } } if (!errors.isEmpty()) { throw new InvalidInputException(errors); } LOG.info("Total input paths to process : " + result.size()); return result; }
3、protected long computeSplitSize(long blockSize, long minSize, long maxSize),计算出当前Job所配置的分片最大尺寸。
protected long computeSplitSize(long blockSize, long minSize, long maxSize) { return Math.max(minSize, Math.min(maxSize, blockSize)); }
4、protected int getBlockIndex(BlockLocation[] blkLocations, long offset), 由于组成文件的块的信息已经获得了,只需要根据offset来计算所在的那个块就行了。
protected int getBlockIndex(BlockLocation[] blkLocations, long offset) { for (int i = 0 ; i < blkLocations.length; i++) { // is the offset inside this block? if ((blkLocations[i].getOffset() <= offset) && (offset < blkLocations[i].getOffset() + blkLocations[i].getLength())){ return i; } } BlockLocation last = blkLocations[blkLocations.length -1]; long fileLength = last.getOffset() + last.getLength() -1; throw new IllegalArgumentException("Offset " + offset + " is outside of file (0.." + fileLength + ")"); }
转自:,